|
Ме́тод Мо́нте-Ка́рло (методы Монте-Карло, ММК) — общее название группы численных методов, основанных на получении большого числа реализаций стохастического (случайного) процесса, который формируется таким образом, чтобы его вероятностные характеристики совпадали с аналогичными величинами решаемой задачи. Используется для решения задач в различных областях физики, химии, математики, экономики, оптимизации, теории управления и др.
|
Интегрирование методом Монте-Карло Предположим, необходимо взять интеграл от некоторой функции. Воспользуемся неформальным геометрическим описанием интеграла и будем понимать его как площадь под графиком этой функции. Для определения этой площади можно воспользоваться одним из обычных численных методов интегрирования: разбить отрезок на подотрезки, подсчитать площадь под графиком функции на каждом из них и сложить. Предположим, что для функции, представленной на рисунке 2, достаточно разбиения на 25 отрезков и, следовательно, вычисления 25 значений функции. Представим теперь, мы имеем дело с -мерной функцией. Тогда нам необходимо отрезков и столько же вычислений значения функции. При размерности функции больше 10 задача становится огромной. Поскольку пространства большой размерности встречаются, в частности, в з ... Читать дальше » |
Дальнейшее развитие и современность В 1950-х годах метод использовался для расчётов при разработке водородной бомбы. Основные заслуги в развитии метода в это время принадлежат сотрудникам лабораторий ВВС США и корпорации RAND. Одними из первых Метод Монте-Карло для расчёта ливней частиц применили советские физики А.А.Варфоломеев и И.А. Светлолобов[2] В 1970-х годах в новой области математики — теории вычислительной сложности было показано, что существует класс задач, сложность (количество вычислений, необходимых для получения точного ответа) которых растёт с размерностью задачи экспоненциально. Иногда можно, пожертвовав точностью, найти алгоритм, сложность которого растёт медленнее, но есть большое количество задач, для которого этого нельзя сделать (например, задача определения объёма выпуклого тела в n-мерном евклидовом пространстве) и метод Монте-Карло является единственной возможностью для получен ... Читать дальше » |
Рождение метода Монте-Карло в Лос-Аламосе Сначала Энрико Ферми в 1930-х годах в Италии, а затем Джон фон Нейман и Станислав Улам в 1940-х в Лос-Аламосе предположили, что можно использовать связь между стохастическими процессами и дифференциальными уравнениями «в обратную сторону». Они предложили использовать стохастический подход для аппроксимации многомерных интегралов в уравнениях переноса, возникших в связи с задачей о движении нейтрона в изотропной среде. Идея была развита Уламом, который, раскладывая пасьянсы во время выздоровления после болезни, задался вопросом, какова вероятность того, что пасьянс сложится. Вместо того, чтобы использовать обычные для подобных задач соображения комбинаторики, Улам предположил, что можно просто поставить эксперимент большое число раз и, подсчитав число удачных исходов, оценить вероятность. Он же предложил использовать компьютеры для расчётов методом Монте- ... Читать дальше » |
Создание математического аппарата стохастических методов началось в конце XIX века. В 1899 году лорд Релей показал, что одномерное случайное блуждание на бесконечной решётке может давать приближенное решение параболического дифференциального уравнения. Андрей Николаевич Колмогоров в 1931 году дал большой толчок развитию стохастических подходов к решению различных математических задач, поскольку он сумел доказать, что цепи Маркова связаны с некоторыми интегро-дифференциальными уравнениями. В 1933 году Иван Георгиевич Петровский показал, что случайное блуждание, образующее Марковскую цепь, асимптотически связано с решением эллиптического дифференциального уравнения в частных производных. После этих открытий стало понятно, что стохастические процессы можно описывать дифференциальными уравнениями и, соответственно, исследовать при помощи хорошо на тот момент разработанных математических методов решения этих уравнений.
|
Пример случайного распределения. |